av影片

Teachers' Profile

当前位置: av影片 > Teachers' Profile > 正文

Ju Tan

发布日期:2025-07-08 作者: 来源: 点击:

Ju Tan, Ph.D.

Associate Professor

Department of Data Science

School of Microelectronics & Data Science

Anhui University of Technology

 

Research Interests

Homogeneous Finsler geometry, Riemannian geometry

Lie groups, Lie algebras

 

 

Teaching Courses

Advanced mathematics, Complex variable function and integral transformation, Probability theory

Lie algebras, Differential manifold

 

Grants

202101-202312, The study of Einstein Finsler metrics and related problems on

homogeneous spaces, National Natural Science Foundation of China, 12001007

201907-202212, The study of Einstein metrics and Einstein-Randers metrics on Lie groups, Natural Science Foundation of Anhui Province, 1908085QA03

201901-202012, The research on curvature in homogeneous Finsler spaces, Youth Foundation of Anhui University of Technology, QZ201818

 

Selected Publications

1. Bo Zhang, Huibin Chen and Ju Tan, New non-naturally reductive Einstein metrics on SO(n). Internat. J. Math., 29(11) (2018), 1850083 (13 pages).

2. Ju Tan and Na Xu, Homogeneous Einstein-Randers metrics on some Stiefel    

manifolds. J. Geom. Phys., 131 (2018), 182-188.

3. Hui Zhang, Zhiqi Chen and Ju Tan, Left-invariant conformal vector fields  

on non-solvable Lie groups. Proc. Amer. Math. Soc. 149(2021),no. 2, 843-849. 

4. Ju Tan and Na Xu, Conformal vector fields on Lie groups of dimension 4 with signature of (2,2). J. Lie Theory 31(2021),no. 2, 543-556.

5. Ju Tan and Na Xu, New Einstein-Randers metrics on homogeneous spaces

arising from unitary groups. J. Geom. Phys. 174(2022),Paper No. 104456.

6. Ming Xu, Ju Tan and Na Xu, Isoparametric hypersurfaces induced by navigation  

 in Lorentz Finsler geometry. Acta Math. Sin. (Engl. Ser.)39(2023), no. 8,

1547-1564.

7. Ju Tan and Ming Xu, Naturally reductive(α1,α2)metrics. Acta Math. Sci. Ser.  

B (Engl.Ed.)43(2023), no. 4, 1547-1560.

8. Shaoxiang Zhang and Ju Tan, Left-invariant minimal unit vector fields on the

solvable Lie group. Chinese Ann. Math. Ser. B44(2023), no. 1, 67-80.

9. Ming Xu and Ju Tan, The symmetric space, strong isotropy irreducibility and

equigeodesic properties. Sci. China Math. //doi.org/10.1007/s11425-022-2090-1