Ju Tan, Ph.D.
Associate Professor
Department of Data Science
School of Microelectronics & Data Science
Anhui University of Technology
Research Interests
l Homogeneous Finsler geometry, Riemannian geometry
l Lie groups, Lie algebras
Teaching Courses
l Advanced mathematics, Complex variable function and integral transformation, Probability theory
l Lie algebras, Differential manifold
Grants
l 202101-202312, The study of Einstein Finsler metrics and related problems on
homogeneous spaces, National Natural Science Foundation of China, 12001007
l 201907-202212, The study of Einstein metrics and Einstein-Randers metrics on Lie groups, Natural Science Foundation of Anhui Province, 1908085QA03
l 201901-202012, The research on curvature in homogeneous Finsler spaces, Youth Foundation of Anhui University of Technology, QZ201818
Selected Publications
1. Bo Zhang, Huibin Chen and Ju Tan, New non-naturally reductive Einstein metrics on SO(n). Internat. J. Math., 29(11) (2018), 1850083 (13 pages).
2. Ju Tan and Na Xu, Homogeneous Einstein-Randers metrics on some Stiefel
manifolds. J. Geom. Phys., 131 (2018), 182-188.
3. Hui Zhang, Zhiqi Chen and Ju Tan, Left-invariant conformal vector fields
on non-solvable Lie groups. Proc. Amer. Math. Soc. 149 (2021), no. 2, 843-849.
4. Ju Tan and Na Xu, Conformal vector fields on Lie groups of dimension 4 with signature of (2,2). J. Lie Theory 31 (2021), no. 2, 543-556.
5. Ju Tan and Na Xu, New Einstein-Randers metrics on homogeneous spaces
arising from unitary groups. J. Geom. Phys. 174 (2022), Paper No. 104456.
6. Ming Xu, Ju Tan and Na Xu, Isoparametric hypersurfaces induced by navigation
in Lorentz Finsler geometry. Acta Math. Sin. (Engl. Ser.) 39 (2023), no. 8,
1547-1564.
7. Ju Tan and Ming Xu, Naturally reductive (α1,α2) metrics. Acta Math. Sci. Ser.
B (Engl.Ed.) 43 (2023), no. 4, 1547-1560.
8. Shaoxiang Zhang and Ju Tan, Left-invariant minimal unit vector fields on the
solvable Lie group. Chinese Ann. Math. Ser. B 44(2023), no. 1, 67-80.
9. Ming Xu and Ju Tan, The symmetric space, strong isotropy irreducibility and
equigeodesic properties. Sci. China Math. //doi.org/10.1007/s11425-022-2090-1